
Distributed Dynamic Hash Tables Using IBM LAPI 
 

J.M. Malard1 and R.D. Stewart2 
 

Pacific Northwest National Laboratory3 
Battelle Boulevard, P.O. Box 999 

Richland, WA 99352 
 
 

Abstract 
An asynchronous communication library for accessing and managing dynamic hash tables over a network of 
Symmetric Multiprocessors (SMP) is presented. A blocking factor is shown experimentally to reduce the variance of 
the wall clock time. It is also shown that remote accesses to a distributed hash table can be as effective and scalable as 
the one-sided operations of the low-level communication middleware on an IBM SP. 
 

1. Introduction 
The hash table is essential to many computational applications and the related literature is huge27,12. Hashing may occur 
implicitly in some applications such as binning in finite element computations with moving adaptive numerical 
grids16,17,23,26 or in image analysis during iso-surface construction. Hashing also arises in graph induction and state-
space generation30,6 and in data mining11. Traditional numerical computations such as multipole methods and N-Body 
problems also make use of hashing28.  
 
This paper is about a software library (called CSE_Hash) for accessing and managing dynamic hash tables over a 
network of Symmetric Multiprocessors (SMP)13. These hash tables are dynamic because they can grow to 
accommodate additional entries, but also because they can be instantiated remotely on a target process from an origin 
process. Implementations of active messages that are both documented and actively supported have recently become 
available3,5,14,24. For the present work, we used the Pthread library18 in addition to the active messages from the IBM 
LAPI library because both libraries run on some of the large and currently most heavily used computers at PNNL. 
 
The CSE_Hash library has been designed to be a key tool for accessing and managing dynamically allocated memory 
asynchronously across a network of SMPs. Our primary goal is for this library to serve as a building block for data 
intensive applications envisioned at PNNL. As such, it is important that the performance of insertions, look-ups and 
deletions be as close as possible to that of the low-level communication operations with which application scientists 
would program their hash tables. One can easily appreciate by the size of the current literature on hashing that parallel 
implementations of hashing do exist. For instance, the Multipol library of distributed data structures from Katherine 
Yelick et al.29 contains a general non-blocking distributed hash table. Threads are central to the design of the Multipol 
system and it was written in terms of active messages that were themselves implemented using message-passing 
libraries such as NX on the Intel Paragon and MPL on the IBM SP1 and SP2. Multipol applications are written in the 
Shared Memory Programming Paradigm where all data is uniformly available to all processes. Another related effort, 
the Hierarchical Distributed Dynamic Array (HDDA) system by Manish Parashar et al.21,22 was developed in the 
context of Structured Adaptive Mesh Refinement Applications. Each element of a HDDA can itself be an HDDA. This 
system maps a hierarchy of lattice points onto an extensible hash table where the mapping between lattice points and 
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hash keys is defined by space-filling curves. The mapping between spatial coordinates and hash keys is made efficient 
by the assumption that the underlying lattice is regular. Hash table entries point to buckets that are joined and split to 
accommodate insertions and range queries. This adds one level of complexity relative to the hash table studied here 
where each value is stored in the hash table along with its key. When the hash table is tightly bound to an application or 
to a programming model it may become difficult understand the performance aspects of dynamic hashing in a parallel 
environment and to isolate the important algorithmic parameters. The latter is our secondary goal in this work. 
 
The API presented here is less general than say Linda4 or Codd’s relational algebra7. Linda has a single tuple-space 
from where applications can enter and retrieve values. Those values can have any size and may be executable. Values 
in tuple-space may be retrieved by any process using a pattern-matching mechanism. In comparison, the CSE_Hash 
library supports one separate tuple-space for each distributed hash table that has been initialized. All values within a 
hash table are constrained to be sequences of non-executable atomic values of the same type and length. The general 
Linda framework introduces many software parameters that may affect the runtime performance of remote memory 
access. The ability to maintain several independent spaces in a multi-threaded environment is an important 
consideration as well for the complex message-passing applications that were being considered when the CSE_Hash 
API was defined. The relational algebra includes multiple concurrent spaces in the forms of typed relations. On the 
other hand, the usual relational operators or joins are not well suited to implement irregular or random access patterns.  
 
On another level, the hash table API described in this paper differs from the Message Passing Interface MPI8, 
SHMEM25, the Advanced Remote Memory Copy Interface (ARMCI)19 or IBM’s Low Level API24 in that it replaces 
the concept of a physical address by that of a user specified index. It also differs from array based toolkits and language 
extensions such as Global Arrays20 and HPF10 because those indices need not be contiguous and they are bounded by 
the admissible range of keys rather than by the physical memory available. 
 

2. Distributed Hash Tables 
2.1. An Example: One-sided matrix scatter 
 
The CSE_Hash library assumes a Multiple Instruction Multiple Data Model where independent processes cooperate to 
compute some operation. For instance, the rows of a sparse matrix A, initially stored on one of p processes, say P0, 
might have to be scattered onto all p processes. The rows might be dealt to processes in a round-robin manner (a row 
cyclic distribution) with the first row sent to process P1, the second row to P2, etc. Many ways exist to store a sparse 
matrix in the memory of a single process. A very simple technique is to insert pairs formed of a column index and the 
corresponding non-zero value into a hash table using the corresponding row index for the key. Suppose that the non-
zero values are stored in a file, one per line, as triplets of corresponding row index, column index and non-zero value. 
This last storage scheme is known as coordinate storage. It uses about 50% more storage than most list-based schemes 
but is relatively easy to use. Figure 1 illustrates, using the language C, how process P0 might read the matrix A into a 
local hash table denoted hash_x. The iteration is over all nnz non-zero values of A. This number has been read 
previously from the “input file” ifp. The first statement, a procedure call, reads in one non-zero value along with its row 
and column indices. The next three statements pack the column index and floating point value into a 2-integer array 
called batch. The last statement inserts this array into the local hash table. The denotation hash_x is also known as a 
handle. The statement that creates this hash table would specify that all its values are sequences of two integers. The 
last argument of the function hash_insert_x is an input/output argument. Upon entry, its value is the number of pairs to 
be inserted into the table. That is, a single call to hash_insert_x could insert many pairs of integers, as long as they are 
stored contiguously. It is possible that an upper limit has been set on the maximum size of the hash table and that this 
limit prevents some pairs in batch from being inserted. Upon exit from hash_insert_x, the value of n is the number of 
pairs that were really inserted. This number n is important, later it will be referred to as the request size. One last point, 
two threads on process P0 might try to access the hash table hash_x concurrently. The naive approach to ensuring that 
accesses are atomic is to wrap a lock around the hash table and that is what is done here. The handle hash_x contains 
one such lock, which is grabbed by hash_insert_x before entering the hash table and released before exit.   
 
 

 



for ( i=0; i<nnz; i++ ){ 
 

fscanf(ifp, "%d %d %f", &row, &col, &val); 
 

one.f = val; 
batch[0] = col; 
batch[1] = one.v; 

 
 

n = 1; 
hash_insert_x (hash_x, row, batch, &n); 

}  

/*Read one non-zero entry of matrix A.                 */ 

/* Store the column index and non-zero floating point  */ 
/* value into and array of integers called batch.      */ 

/* Insert this two-element array into the local hash   */ 
/* table hash_x                                        */ 

The next step for process P0 would be to remove for its local hash table hash_x, those rows that belong to other 
processes and to insert them into local hash tables of the appropriate target processes. Figure 2 shows a C code 
fragment for doing just this. Process P0 initiates some fixed number L of remote insertions and then waits for them to 
complete. This blocking factor L is important and will reappear later. It is being introduced for two reasons. First, space 
is limited. The buffer space where the inserted values are held, array batch, cannot be reused before the transaction is 
complete, that is before the inserted values have reached the target process. If m denotes the maximum number of non-
zero in any row of A then the array batch must be able to store at least 2*L*m integers. Second, some communication 
middleware impose a limit on how many communication requests may exist in the system at any one time. Initiating, 
without pause, a million communications all targeting the same process might stall such middleware. 

Figure 1 How process P0 might read a sparse matrix in coordinate storage into a local hash table. 

  
nsent = 0; 
for ( i=1; i<=nrows; i++ ) { 
 

target = i%p; 
if ( target!=0 ){ 

n = m; 
hash_delete_x (hash_a->hash_x, 

i, &batch[2*nsent*m], &n); 
 

HASH_Insert (hash_a, 
target, i, n,  
&batch[2*nsent*m], 
&reqs[nsent]); 

  nsent++; 
} 

 /* Completion phase starts */ 
if ( nsent == L || i+nsent >= nrows ){ 

HASH_Wait( nsent, reqs); 
nsent = 0; 

} 
} 
/* Barrier phase starts */ 
HASH_Flush( hash_a ); 
  

/* Initiation phase starts */ 

Figure 2 How Process P0 might scatter the matrix A using a cyclic row distribution. 
The functions for searching and deleting values from the local hash table, hash_find_x and hash_delete_x, have nearly 
the same calling sequence as hash_insert_x. The only difference is that the array of values is an output argument. Those 

 



two query functions differ from one another in that the values returned by hash_delete_x are no longer in the local hash 
table when it returns.  
 
The local hash table hash_x does not contain all the necessary information to constitute a truly distributed hash table. 
Instead, hash_x is a member of a more complex structure hash_a. This relationship is captured in C by writing hash_x 
= hash_a->hash_x. The handle, hash_a, was returned by the call that created the distributed hash table. Values can be 
inserted, looked-up and deleted from the distributed hash table by all processes holding a handle that match hash_a. 
The functions for the latter distributed operations, respectively HASH_Insert, HASH_Find and HASH_Delete, are non-
blocking; the communication operation they initiate need not be complete before they return. The same calling 
sequence is used for all the initiation functions HASH_Insert, HASH_Find and HASH_Delete, namely 
 

ierr = HASH_Insert ( hash_a, target, key, n, arrayofvalues, &request ). 
 
Here, target is an integer between 0 and p-1 that identifies on which process the n values stored in arrayofvalues will 
be inserted. We could eliminate this argument if for instance we knew that a cyclic distribution of the keys is always 
optimal, that is all values for key k are inserted on process k%p (k modulo p). The third argument is the value of the 
key. The fourth argument, the request size n, has already been discussed. Note that values assigned to keys are 
sequences of values of basic data types, e.g. int, long, long long, etc. Those (sequences of) values are stored 
contiguously in the one-dimensional array arrayofvalues, which is an output argument in the case of HASH_Find and 
HASH_Delete. The last argument is a pointer to a communication request. When this pointer is non-null, the insertion 
is complete when a matching call to HASH_Wait returns. At that time, the number of key-value pairs processed 
successfully can be read using the request handle. In the case of HASH_Insert and HASH_Delete, all values transferred 
from the target process are then available to the origin process in arrayofvalues. The last function call in Figure 2 is a 
call to a barrier. This call is collective, contrary to HASH_Wait. If HASH_Wait is called, it must be called by all 
processes sharing the handle hash_a. It returns when all remote accesses to the distributed hash table are complete.  
 
One last point about Figure 2 is in order before going into the details of how remote hash table accesses are 
implemented. How should the wall-clock time of this loop be defined? Suppose that the bulk of the work takes place 
between the repeated calls to HASH_Insert and the call to HASH_Wait. The latter would likely return immediately and 
all the work would be done when HASH_Flush is called. In that case, the relevant wall-clock time is be the sum of the 
times spent in HASH_Insert and hash_delete_x. Let us call this time the initiation time. If on the other hand, the bulk of 
the work were done inside the loop but after HASH_Wait returns, the relevant wall-clock time would be the sum of the 
initiation time and of the time spent in HASH_Wait. Let us call this time the completion time. Finally, when the bulk of 
the work is done after the barrier HASH_Flush is called, then the relevant wall-clock time is the sum of the completion 
time and of the time spent in HASH_Flush. Let us call this time the barrier time. 
  
2.2 Execution model 
As for the details: when a value is inserted remotely by an origin process in the local table of a target process, the 
origin process initiates a so-called active message whose purpose is to invoke a remote procedure or handler on the 
target process using the data supplied to the active message. An active message then consists of three main 
components: the identity of the target process, the address of the handler on the target process and the arguments to this 
handler. In principle, active messages can be implemented without threads using simple point-to-point message passing 
and some appropriate data structures. In some implementations, a new thread is spun on the target process each time an 
active message arrives. In other implementations, a service thread handles all in-coming active messages. The LAPI 
implementation is of the latter type. The information associated with an active message is divided into packets. The 
first such packet, or message header, contains all the information needed by the communication system to deliver the 
message at the target process; it may also include a limited amount of user information. The handler routine is split into 
a header handler and a completion handler that are both written by the LAPI user. The header handler returns two 
things to the LAPI (runtime) system: a pointer to some space where to store the incoming packets and the address of a 
completion handler to process the message once it has been copied to the latter space. The LAPI infrastructure involves 
three threads: a user thread, a notification handler thread and a completion handler thread. Header handlers may be 
called from any of the two first threads. Completion handlers are exclusively called from the third thread.  
 
The LAPI active message framework is lightweight; no new thread is spun when an active message is received at the 
target, and there is no garbage collection of buffers allocated by either of the user handlers. Returning to the example of 
a remote insertion, the header handler has allocated enough buffer storage for the user data and called the completion 

 



handler. The completion handler inserts the new values into the local hash table on the target process and then sends the 
status of the transaction back to the origin process. This status consists of a completion flag and the number of entries 
successfully entered in the table. This information is sufficient for the origin process to determine if and which values 
were not inserted, for instance because for instance the local table size reached a preset limit. It is natural to implement 
this last exchange using a one-sided put operation. The last task of the completion handler is to release the buffer space 
allocated by the header handler. This cannot be done while those buffers are being used to return data to the origin 
process. Experiments with an earlier distributed hash table showed that up to 40% of the time spent in the completion 
handler was spent waiting to deallocate buffers. The simple cure is to keep a message queue where the completion 
handler can leave the state of the remote insert. When a completion handler is called, its first step is then to wait for 
completion of the first request on the queue and to deallocate the corresponding buffer space. The maximum number of 
states that can be saved in this message queue is important and it is denoted by the letter q. 
 
2.3 A note on the impact of threads 
In summary, the CSE_HASH library is implemented in three nested levels: distributed, threaded and serial. The serial 
level implements a simple dynamic hash table with open addressing and fixed bucket size. The threaded level simply 
wraps Pthread mutexes around every operation at the serial level. The distributed level relies on an active-message 
layer to initiate the appropriate thread-level operation on the target process and on one-sided communications to return 
the status of the operation to the origin process. What then is the cost of thread management? That cost is higher than 
that associated with mutexes only; for instance the invocation of a completion handler can provoke an instruction cache 
miss. As an estimate, we wrote a simple MPI implementation of the matrix scatter code in Figure 1 and Figure 2, 
running on a single user thread using the MPI library from IBM. This MPI code stores the input matrix a hash table at 
the threaded level, i.e. hash_insert_x, etc. This MPI code is also blocking; it uses only the standard blocking point-to-
point communications MPI_Send and MPI_Recv. The test matrices are sparse matrices downloaded from the 
MatrixMarket website[1]. Table 1 shows the average barrier time in microseconds per non-zero values in the matrix. 
The two implementations ran using all four processors of four nodes of the IBM SP described later in Section 3.   

Table 1 Averages of the barrier time of the matrix scatter over the number of non-zero matrix entries show that 
the relative cost of thread management decreases as the matrix becomes bigger.  

Matrix   Size Non-zeros I/O Barrier 
CSE_Hash 
Barrier Send/Recv Barrier 

s3dkq4m2 90449 2455670 543.2 61.1341 58.7964 
e40r5000 17281 553956 2474.21 212.198 208.536 
e40r0000 17281 553956 2478.91 210.793 209.767 
af23560  23560 484256 2033.16 163.266 158.122 
bcsstk17 10974 219812 273.357 41.7125 41.614 
fidapm29 13668 186294 46.7143 6.84031 5.32564 
bcsstk25 15439 133840 823.144 316.992 305.686 
memplus  17758 126150 63.3752 16.1653 16.9388 
bcsstk18 11948 80519 658.351 370.815 357.013 
tols4000 4000 8784 39.7594 26.9704 18.3502 
bwm2000  2000 7996 62.9534 31.4562 26.4441 
west2021 2021 7353 69.9668 66.5721 53.1782 
jpwh_991 991 6027 77.216 39.5261 27.4571 
tols2000 2000 5184 29.2404 27.0639 7.02411 
cdde6    961 4681 65.1188 23.7996 14.031 
fs_541_4 541 4285 67.1141 26.5981 18.6019 
impcol_d 425 1339 36.832 52.7199 14.5668 
impcol_a 207 572 68.1591 45.6399 14.8374 
impcol_c 137 411 77.4964 79.8248 9.08759 
impcol_b 59 312 41.3205 53.6058 20.1987 

 

 



There are other potentially more effective ways to guarantee atomic accesses to a hash table at the threaded level. One 
might split the lock, one might grab read-only locks whenever possible, or one might resort to lock-free mechanisms. 
Lock-free accesses and updates to table entries can be implemented using one-sided communications (get and store-
conditional)9,15. Lock-free mechanisms avoid locking operations at the expense memory copies. The discarded memory 
must be reclaimed. The time to initiate an active message on the origin process is much bigger than the time for a 
mutex lock when the lock is ready, and so is the time to initiate a put operation on the target process. Since the values 
held in a table are atomic, accesses to the local table are quick compared to a mutex lock. Much of the time spent 
answering a remote hash table access is spent waiting to deallocate buffers after they are no longer needed. In the 
present context, it seems likely that items in the message queue would take longer to clear with lock-free accesses than 
with mutexes. A garbage collector could process obsolete copies, but might also hide the interactions between software 
parameters and wall-clock time(s). Note also that lock-free accesses and garbage collection would be justified if the 
values in the hash table were neither atomic nor small. An example might be that of a hash table of quadtrees. 
 

3. Micro benchmarks 
Three types of micro-benchmarks were defined, corresponding to different communication patterns, values in the table 
were single 32-bit integers and keys were themselves 32-bit integers. The same unsorted sequence of m unique keys 
was generated on each process; in the first set of benchmarks, shown in Figure 3, one million such keys were generated 
in the range from 0 to 7 millions. During each benchmark, three loops similar to that of Figure 2 are executed in 
sequence. Values are inserted in the first loop, searched for in the second and deleted in the last. The corresponding 
source code, not shown here, is very similar to that shown in Figure 2, except that the values and their keys are initially 
stored in two separate arrays rather than in a local hash table. 
 

• In the best-case scenario (1-N), process P0 inserts, then looks up and finally deletes the whole set of key-value 
pairs from all p processes. All values for the key k are mapped to process number k%p, the remainder of the 
integer division of k by p. Runtime averages are taken over the number of values transferred to or from the 
target processes.  

• The all-to-all scenario (N-N) is identical to the 1-N scenario except for the fact that the itch process is both the 
target for all operations involving keys whose residue modulo p is i and the origin for all table accesses for the 
keys m/p*i through m/p*i+i-1 in the sequence. Runtime averages are taken over the number of values inserted 
by each origin process. 

• The worst-case scenario (N-1) is the opposite of the 1-N scenario. Processes originate the same operations as 
in the N-N case but now process Po is the target of them all. Runtime averages are taken over the number of 
values inserted by each origin process. 

 
Runtimes were measured in dedicated mode on an IBM SP at Pacific Northwest National Laboratory with 4-way 
Power III nodes with 375 MHz CPUs. There was one process on each processor, so there were four processes on each 
SMP node. Measurements were done using the Performance Application Programming Interface (PAPI) library2.  
 
Figure 3 shows a comparison of the completion time of HASH_Insert and LAPI_Put for all three scenarios with a 
single value inserted with each key, in particular the communication request size n is one. There are some important 
difference between the benchmark loops for HASH_Insert and LAPI_Put. First, the LAPI loops store the values into an 
array of 7 millions elements using key values as indices. In this way, the addresses of the values on the target process 
are computed using simple arithmetic by the origin process. Second, the loop for timing LAPI_Put is unblocked: 
LAPI_Waitcntr is called immediately after LAPI_Put. 
 
The worst-case completion times (N-1) increase linearly with the number of processors for both LAPI_Put and 
HASH_Insert. That is because only one thread is servicing all insertions and the total insertion time is effectively 
constant. Observe that the completion times for HASH_Insert in the N-N and 1-N scenarios are very close to that for 
the LAPI_Put 1-N case; that is also true for the initiation times.  
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Figure 3 Comparison of the average completion times for PAPI_Put and HASH_Insert over the same sequence 
of random keys for best (1-N), average (N-N) and worst (N-1) case communication patterns.  

 

4. Link between request and queue sizes 
How robust are our results? The PAPI clock resolution on this IBM SP is about three microseconds; but in the context 
of inter-process communication, the variance of the run-time may be more informative. Therefore, we ran 200 N-N 
micro-benchmarks with random settings. Each randomized run used a distinct sequence of keys (ranging from 0 and 7 
millions) by starting the random number generator with a distinct seed. The number of SP nodes varied between 1 and 
11 with all four processors on each node active. The request size n for every table access varied randomly between one 
and eight. The blocking factor L, see Figure 2, varied randomly between 1 and multiples of 10 ranging from 10 to 200. 
The total number of keys was fixed at 10,000 times the number of processors. Figure 4 shows a scatter plot of the wall 
clock times divided by the number n of values transferred versus the blocking factor L, with one data point (dash) for 
each process and each run. Larger red dashes are for the immediate times, medium size blue dashes are for the 
completion times and the smaller brown dashes are for the barrier times. Wall-clock times for a single run tend to 
cluster together, leaving gaps within columns. The block length L appears to have little impact on the immediate wall-
clock time. However, the variance of the completion wall-clock time seems to decrease when L increases. Only four of 
the runs had a value of L equal to 130, the corresponding column is clearly shorter than the all other columns. 
 
The greatest part of the wall-clock time is spent, by far, in completion handlers waiting to free buffer space that is no 
longer needed13. When, for instance, n values for key k are removed from process Pt by process Po, the completion 
handler on Pt first allocates a buffer b to hold the values it will remove from the local table. This buffer is then passed 
on to the LAPI_Put operation that will transfer the values back to Po. Clearly, b cannot be released before the call to 
LAPI_Put completes locally. As was described earlier, such active transactions are placed in a queue of size q to await 
release of their buffers. The queue size in Figure 4 is 128. No such reduction is apparent in a similar graph using the 
same micro-benchmark parameters but a queue size of zero, which is when each completion handler frees all the 
storage allocated by the corresponding header handler. Its therefore seems unlikely that such a reduction would be due 
to sampling only. The analysis that follows confirms this impression. This analysis is based on the Kruskal-Wallis test 
for equality of distributions among independent data series. 
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Figure 4 Blocking is seen to reduce the variance of the wall clock time over 200 random micro-benchmarks with 
insertion, search and deletion on 4 to 44 processors of an 4-Way 375MHz IBM SP. 

 
The Kruskal-Wallis test is a well-known non-parametric (rank) test for testing equality of distributions among r 
independent data series. Let Xij denote the ith sample of the jth series with mj ≥ i ≥ 1 and mj ≥ 5 for all j. If y1, ... ym is the 
sorted sequence of all observed values, including repetitions, then the rank Rij of a sample Xij is the average of all 
positions k with yk=Xij. For instance, if the 4 observed values were 0.001, 0.2, 0.1 and 0.2, the computed ranks would 
be 1, 3.5, 2 and 3.5 respectively. One defines a statistic H whose distribution is approximately (asymptotically) a χ2 
distribution with r-1 degrees of freedom. For completeness sake, H is defined by the equation below where µj denotes 
the mean rank for the jth series and µ is the mean rank over all series. 
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The Kruskal-Wallis test rejects the null hypothesis that the samples within the series are identically distributed when 
the computed value of H exceeds an appropriate threshold. For example with 20 series, one would reject the null 
hypothesis at the 0.05 significance level whenever the computed value of H is greater than or equal to 30.14. Further 
details about the H statistic can be found in any good textbook on sturdy statistics. In general, each data series should 
have at least five samples for the test to be meaningful. In addition, there should not be too many ties among samples 
and those samples must be faithful to the data. The last point is easily overlooked in the present context. Wall-clock 
times are recorded in terms of completed CPU cycles and converted in microseconds. They are stored as 32-bit 
variables and printed with 6 digits of precision. Not all those digits are meaningful and different conclusion may be 
reached depending on how many digits one considers when computing H.  
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Figure 5 Block sizes L near half the queue size q=128 are seen to reduce the relative difference between the mean and 
maximum completion and barrier wall-clock times.  
 
The data records being dependent it is convenient to define a measure of variability in the wall-clock times for each 
run. The wall-clock time variability is the ratio whose numerator is the difference between the largest wall-clock time 
and mean wall-clock time and whose denominator is the mean wall-clock time. This gives us a single number for each 
run, actually one number for each of the three types of wall-clock times. Those numbers can be regarded as both 
commensurate and independent of one another. Figure 5 shows the mean variability as a function of the blocking factor 
L for insertions and searches. Wall-clock times for deletions are similar to those for searches and are not shown. The 
wall-clock times for each of the six series were analyzed separately. Each of the resulting datasets consists of 21 
sequences one for each value of L. Suppose that the blocking factor L had no effect on the wall-clock time; one would 
expect that the distribution within each of the 21 subsets would be the same. When the Kruskal-Wallis test rejects the 
above null hypothesis at a 0.05 level of significance, there is a 5% chance that the distribution of wall-clock times does 
not vary across subgroups, that is that L has no impact. This test does not elucidate the nature of any variability. Among 
all 21 series, only one (for L = 130) had fewer than 4 points and it was excluded from the analysis. We also truncated 
the raw variability data to one digit after the decimal point. The resulting H statistics are shown in Table 2 both for a 
queue size q=0 and q=128. The blocking factor appears to loose its relevance when the queue is disabled.  

Table 2 Kruskal-Wallis H statistics for the wall clock-time versus the blocking factor L, suggest a relationship 
between effective values of L and the queue size q. Values of H leading to rejection of the null hypothesis at the 
0.05 significance level are shown in bold. 

q 
Find 
Immediate 

Find 
Completion

Find 
Barrier 

Insert 
Immediate

Insert 
Completion 

Insert 
barrier 

0 12.4827 16.849 30.2172 81.9073 71.2191 61.5092 
128 72.743 58.6451 50.6353 80.6566 70.5592 55.835 

 
An analysis of the hardware event counts generated by PAPI shows that the total number of elapsed cycles is less 
closely related to cycles stalled waiting for memory accesses in runs with L equal to 50 than in runs with L equal to 1, 
10 or 60. A plausible explanation is that when the blocking factor L is small the load among processes is not as 
uniformly distributed as when L is large. On the other hand, when L is large compare to the queue length q, it becomes 
more likely for a completion handler to will have to wait before being able to free buffers from a previous transaction.  

 



5. Scalability 
Figure 6 shows a scatter plot of all-clock time versus number of processors for the same data as in Figure 4. Again, 
each dash represents one wall-clock time for one process during one of the 200 randomized micro-benchmarks. The 
same color and size code is used as well. The peak at 16 processors and the drop at 44 are a reflection of the sampling.  
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Figure 6 Scalability of insertions, searches and deletions over 200 random micro-benchmarks with insertion, 
search and deletion on 4 to 44 processors of an 4-Way 375MHz IBM SP. 

One would expect that for a scalable code, the number of processors should not have a significant impact on the 
variability of the wall-clock time as defined in the previous section. A Kruskal-Wallis test may be used for showing, 
possibly with a high degree of confidence, that a parallel code is not scalable. In particular, this test is not strong 
enough to demonstrate scalability in this way. Here, we partitioned the data into 11 groups according to the number of 
processors. The series for 44 processors was excluded for not having enough samples. Table 3 shows the computed H 
statistic with and without the message queue enabled. The figures that appear in parenthesis are the values of H when 
the group for 4 processors is excluded. The reason this series has such a strong impact is that communication within a 
node is significantly faster than across nodes.  

Table 3 Kruskal-Wallis H statistics, for the wall-clock time versus the number of processors, illustrate the 
importance of the message queue with respect to scalability. Values leading to reject the null-hypothesis at the 
0.05 significance level are shown in bold.  

q 
Find 
Immediate 

Find 
Completion

Find 
Barrier 

Insert 
Immediate

Insert 
Completion

Insert 
Barrier 

0 36.21 
(8.74) 

14.32 
(9.02) 

42.67 
(13.98) 

25.69 
(10.15) 

27.03 
(4.53) 

87.82 
(19.89) 

128 10.19 
(11.11) 

16.21 
(6.59) 

23.17 
(29.72) 

10.43 
(12.07) 

9.49 
(21.78) 

36.68 
(64.48) 

 

6. Conclusion 
 
A distributed hash table library implemented on top of active messages has been presented. The effectiveness and 
scalability of this library were shown to be both robust and comparable to that of one-sided LAPI operations. The 
existence of a blocking factor affecting the variance of wall-clock time was demonstrated experimentally using 
randomized micro-benchmarks. The size and nature of performance data sets offer some interesting problems in data 
analysis, that were only alluded to in this paper. Finally, we demonstrated how a one-sided communication for linear 
algebra operations, the matrix scatter, can be implemented using distributed hash tables.  
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