PARETO ANNOTATION OF THE DENDOGRAM OF
PERFORMANCE DATA*

JOEL M. MALARD'

Abstract. The dendogram is a fundamental data mining tool which becomes unwieldy when the
number of data points exceeds several thousands. It is shown how this limitation can be alleviated
through annotations based on Pareto dominance of the partitions represented by the nodes of the
dendogram. The approach is illustrated using software performance data gathered using a public
domain LAPACK library.

Key words. data-mining, tree visualization, Pareto optimality

1. Introduction. Porting a software library across computers of different archi-
tectures entails more than running the existing code on the target machine. Perfor-
mance can suffer much from a straight-forward port. Often not only internal param-
eters, such as block sizes, much be changed but algorithmic implementations must be
changed as well. Thus, performance tuning can be a major operational cost.

Deep memory hierarchies ranging from registers, several levels of cache and to
possibly remote memory or disk as well as other advances in computer architectures
all increase the complexity of software performance tuning, see for example[3].

Agile software libraries that implement the Basic Linear Algebra Subroutines
(BLAS) interface such as ATLAS [10] and PHIPAC [1] overcome this problem el-
egantly by calibrating some of their internal parameters during an initial training
phase. Some questions still arise for more complex libraries such as LAPACK that
includes over 1,000 callable subroutines, that can each operate on arguments with a
wide variety of sizes. One such question is: does there exist a small representative set
of library calls that could be effectively used for training? Another related question
is which performance metric to use to guide the calibration? Although the ultimate
goal of software performance optimization is to reduce wall-clock time the necessary
calibration of subroutine parameters and source code restructuring is often guided by
other metrics such as cache or page misses.

Those questions are not answered directly in this paper but a methodology is
proposed that can help answer them through a novel way to look at dendograms.
The same approach can be applied to life-science or meteorological data for instance.
Section 2 focuses on the exploration of structure, such as sub-clusters and outliers,
within the dendogram through the classification of hardware event measurements
across multiple calls to a public domain LAPACK library. Section 3 focuses on the
compression of large dendograms and cluster selection through the classification of
subroutines calls based on hardware events.

2. Regrouping Hardware Performance Counters. Advances in computer
hardware and architecture have enabled the development of hardware event counters
that tally on the processor chip such things as data and instruction cache misses,
branch mis-prediction, etc. These hardware performance counters are becoming more
widely available to application programmers through Application Programming Inter-
faces (API) such as PAPI, RS2HPM, Rabbit, etc. Relations between counter values

*THIS PAPER WAS SUBMITTED TO THE SIAM WORKSHOP ON DISCRETE MATHE-
MATICS AND DATA MINING ON JANUARY 4TH, 2002

fComputational Science and Applied Mathematics Division, Pacific Northwest National Labora-
tory, Battelle Boulevard, PO Box 999, Richland, WA 99352 (jm.malard@pnl.gov).

1

2 J.M. MALARD

across various calls to a software library can lead to further insight into any perfor-
mance bottleneck.

The performance data that is depicted in Figure 3.2 was gathered by running the
timing program xlintimd that is distributed along with the public domain LAPACK
library available on netlib through the URL http://www.netlib.org. This program
was run on a SGI Octane with two 175 MHz R10K CPUs using the PAPI interface.
All timed LAPACK subroutines were called once for each measurable hardware event.
The resulting data was organized into a 24 by 3391 table where each row corresponds
to a hardware event and each column corresponds to a single call to the LAPACK
library. The data is slightly incomplete with 8 values missing. Each row of the data
was scaled to have its entries in the range 0 through 1. This prevents large counts to
dominate the clustering. A larger data set is being compiled on newer machines by
monitoring the LAPACK library across a wider spectrum of test cases.

A hierarchical clustering algorithm was applied to the rows of the data table.
Further details about clustering algorithms and dendograms can be found for example
in [6]. The most interesting output of the clustering algorithm is a weighted tree, called
a dendogram and shown in Figure 3.2. Each fork of this dendogram corresponds to a
decision to merge two rows or two clusters into a single larger cluster. Since forks are
generated in increasing weight of their parent (here downward) arc, each fork in the
dendogram corresponds to a unique partition of the hardware events. Each decision
to merge two objects into a cluster affects the overall quality of the resulting partition.
Two conflicting goals must be juggled with. On one hand, the output clusters should
be as homogeneous as possible. On the other hand, these clusters should be as distinct
as possible. Several definitions of homogeneity and separation exist and are in use;
the exact definitions used for this paper are not essential to the exposition. For a
partition P = (Co, C1, C) of the hardware events into k clusters, its separation will
be denoted S(P) and its homogeneity will be denoted H(P). By extension, we define
the separation and homogeneity of a fork F' in the dendogram to be those of the
corresponding partition and we denote them S(F) and H(F'). For clarity sake, let us
assume that the higher S and H are the better.

The forks of the dendogram can be ranked based on how well the corresponding
partition fares in terms of both homogeneity and separation. This ranking makes
use of the concept of Pareto dominance. A fork F' is said to dominate another fork
F' if 3 conditions are met: H(F) > H(F'), S(F) > S(F') and at least one of the
previous two inequalities are strict. We shall say that a dendogram fork is dominant
if no other fork in the dendogram dominates it in the above sense. Each of the
shaded ellipses in Figure 3.2 highlights the subtree corresponding to a dominant fork.
Two clusters emerge from Figure 3.2. One is formed of events 0 through 6, and
corresponds to various types of level 1 and 2 cache misses; call it C.. The other large
cluster, C, consist of events 8 through 16 and 20 through 23. The events 2 and 5 that
form a sub-cluster of C. correspond respectively to the total number of level-2 data
cache misses and the total number of level-2 cache misses (including the instruction
cache). The level-2 instruction cache misses (event 3) are more closely related to
level-1 instruction cache misses (event 1). Inspection of the bigger cluster C, shows
that the rate at which all instructions are completed (event23) and the rate at which
floating points operations are completed (event 21) are more closely related to the
completion of conditional store operations: failure (event 11), success (event 12) and
total (event 13). The fact that events 11 and 13 form a sub-cluster of their own
suggests that any performance improvements for this set of library functions in this

PARETO ANNOTATION OF DENDOGRAMS 3

Fic. 2.1. Annotated dendogram shows two clear clusters of hardware events as well as sub-
cluster structure

computing environment would come from reducing the number of failed conditional
store instructions.

The events 16 through 19 that belong to neither C. nor C, correspond respectively
to total counts of instructions, floating point instructions, memory load and memory
store instructions completed. Those measures do not relate well with the total number
of cycles spent (event 22) (or wall clock time). The fact that these events form a cluster
that does not add to the quality of the partition would be hard to detect from looking
at the dendogram alone.

3. Regrouping LAPACK Calls. Let us now turn from the classification of
hardware events to the classification of library calls. Such a classification may help
concentrate the performance optimization effort on a few representative cases. Many
fast clustering algorithms, such as k-means, that work well with large data sets re-
quire that the user specify how many clusters will be output. Hierarchical clustering
algorithms on the other hand are more flexible in this regard. Typically, each fork F
of the dendogram is assigned a figure of merit that is some increasing scalar function
of H(F) and S(F). The user then specifies a threshold value. All forks of the den-
dogram whose figure of merit exceeds the given threshold are removed. The resulting
connected components form the desired clusters. Milligan and Cooper investigated
30 different such figures of merit in [8]. The more recent account by Gordon in [6],
reviews the five best performing procedures in [8] and concludes that it is always
advisable to compare the result of several rules.

This last advise is typical of multi-objective optimization problems where trade-off

4 J.M. MALARD

10000 ¢ | |
. partition sizes for Aominant forks <

1000 F

R

&
100

4

10 | | | | |
0 100 200 300 400 500 600

F1c. 3.1. Number of clusters associated with each dominant fork in a dendogram with 3390 forks.

between conflicting goals must be resolved by human intervention. Thus, a number of
output clusters can be found from the dendogram by inspecting the set of dominant
forks and the corresponding partitions. One may for instance choose the smallest
partition corresponding to a dominant fork. A hierarchical clustering of the columns
of our performance data resulted in a dendogram with 3390 forks. A number that is
too large for many public domain dendogram viewers. Figure 3.1 shows the partition
sizes for every one of the 581 dominant forks in the dendogram. Based on the above
decision rule one would produce 50 clusters. The next smaller dominant partitions
have sizes 55 through 57, 70 and 71.

One drawback of hierarchical clustering algorithms is that dendograms with over
a few thousand leaves are hard to visualize. Much work has been done in the recent
years on the subject of hierarchical data visualization, see for example [9] and [7].
One way around this limitation is to add depth to the dendogram based on Pareto
dominance. Then one can concentrate on those internal portions of the dendogram
that are nearer (in depth) to dominant forks. Several Pareto-based ranking have been
used in the context of multi-objective optimization. Goldberg produced the first such
ranking system in the context of genetic algorithms [5]. In essence, the ranking of an
object is its distance from the set of Pareto dominant objects. In the present context
all dominant forks have rank 0. The forks of rank n + 1 are those which would be
dominant if all forks of rank at most n were disregarded. Goldberg’s ranking can
be implemented with O(M?N) comparisons for M objects according to N objectives
using lists of dominated objects. Further details about ranking (or non-dominated
sort) algorithms can be found for instance in the book by K. Deb [4]. Fonseca and
Fleming [2] proposed a more expedient ranking based on the number of forks (in our
context) that dominate a given fork. The rank of a fork is simply the number of forks
that dominate it. The latter algorithm is an initial step of Goldberg’s ranking. It
does the same number of comparisons but requires no list handling.

Figure 3.2 shows a histogram of the Fonseca-Fleming ranks of each of the 3390

PARETO ANNOTATION OF DENDOGRAMS b)

1000 | | |
i Fonseca-Fleming Ranking ——

100 L

count

0 500 1000 1500 2000 2500 3000 3500
rank

Fic. 3.2. Goldberg ranking highlights some loose clusters.

count

0.1 | | | | | | | |
0 10 20 30 40 50 60 70 80 90
rank

Fic. 3.3. Layers from Goldberg’s ranking are more evenly spread.

forks in the dendogram. Although most of the ranks are within the range 0 to 500,
there are clear spikes near 1000 and near 3500. Such spikes may yield information
about the data but visualizing 3500 levels of depth to a dendogram would be hard.
Goldberg’s ranking ranges from 0 to 83 and shows no spikes. This is illustrated in
Figure 3.3 that shows for each ranking, between 0 and 85, the proportion of forks
with that rank.

6 J.M. MALARD

4. Conclusions. It has been shown how concepts from multi-objective optimiza-
tion can be applied to the analysis of a performance data set. The data consists of
hardware event counts for standard timing subroutines of the public domain LAPACK
library. The approach presented here has been shown to be effective in determining a
number of output clusters, in adding depth to the dendogram (thus resulting in a 80
the number of nodes that need to be displayed at first) and in identifying meaningful
subgroups. This approach can be applied to data sets from other sources and most
importantly to incomplete data.

Acknowledgments. This manuscript has been authored by Battelle Memorial
Institute, Pacific Northwest Division, under contracts No. DE-AC06-76 RLO 1830 and
1831 with the US Department of Energy. The United States Government retains and
the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license
to publish or reproduce the published form of this manuscript, or to allow others to
do so, for United States Government purposes.

REFERENCES

[1] J. Bilmes, K. Asanonic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply using
PHIPAC: A portable, high-performance, ansi c coding methodology. In 1997 International
Conference on Supercomputing, Vienna, Austria, 1997.

[2] F. C.M. and F. P.J. Genetic algorithms for multi-objective optimization: Formulation, discus-
sion and generalization. In S. Forrest, editor, Genetic Algorithms: Proceedings of the Fifth
International Conference, pages 416-23, San Mateo, CA, 1993.

[3] D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture A Hardware/Software
Approach. Morgan Kaufmann, 1997.

[4] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Systems and Optimiza-
tion. John Wesley & Sons, Chichester, UK, 2001.

[5] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, Reading, MA, 1989.

[6] A. Gordon. Classification. Number 82 in Monographs on Statistics and Applied Probability.
Chapman & Hall, Boca raton, FL, 1999.

[7] H.Kumar, C. Plaisant, and B. Shneiderman. Browsing hierarchical data with multilevel queries
and pruning. Technical Report CAR-TR-772, University of Maryland, 1995.

[8] G. Milligan and M. Cooper. An examination of procedures for determining the number of
clusters in a data set. Psychometrika, 50:159-79, 1985.

[9] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe. Representative objects: consise represen-

tation od semi-structured, hierarchical data. In Proceedings of the International Conference
on Data Engineering ICDE), pages 79-90, 1997.

[10] W. Whaley, A. Petitet, and J. Dongarra. Automated empirical optimization of software and
the ATLAS Project. Technical Report UT-CS-00-449, University of Tennessee, Knoxville,
2000.

