Parallel Restricted Maximum Likelihood Estimation for Linear
Models with a Dense Exogenous Matrix

J.M. Malard*
November 15, 2000

Abstract

Maximum likelihood estimates of covariance matrices for linear models occur in many statistical and
stochastic applications such as estimating the genetic potential of cattle, financial time series analysis,
the characterization of chemical mixtures and in general in the estimation of the parameters for stochas-
tic differential equations. Restricted Maximum Likelihood (REML) is widely used in application areas
where sampling bias is an important concern, but REML estimates are expensive to compute. Parallel
implementations solely based on parallel dense matrix kernels need not scale well. This paper demon-
strates that it is possible to compute estimates of covariance matrix for linear models based on restricted
maximum likelihood (REML) efficiently on parallel computers. Two approaches to computing in parallel
the gradient of the REML objective function are presented and compared. The covariance matrix is not
assumed block diagonal. The implementations presented are based on PETSc and can run on any parallel
computer supporting MPI.

1 Introduction

The solution of large linear systems Az = b is one of the main activity of the working numerical analyst.
In this respect, structure is often very important. For instance, it is well known that the sparsity pattern
of the matrix A, i.e. the structure of its non-zero elements, can play a crucial role in the efficient solution
of large linear systems by either direct or iterative methods [12, 41]. The importance of the numerical
structure of the coefficient matrix A has also attracted much attention: a well-known example being the
multigrid preconditioners for heath flow equations. The numerical structure of the linear system can
play yet another role in the context of over-determined systems of linear equations. Over-determined
linear systems need not have a unique exact solution and are accurately written as in (1) where A has
m rows and n columns with m > n and where e is an unknown error vector. The choice of an optimal
approximate solution z* to (1) must be guided by some additional constraints arising from the application
area. Such constraints are often expressed in terms of the error vector e or of the residual vector r = —e.

Ar = b+e (1)

Quite commonly, the m x n exogenous matriz A and the vector x of model parameters may be assumed
known exactly while the corresponding vectors e and b are tainted with uncertainty and may therefore
be interpreted as realizations of some random vectors e and b. A major advantage of this approach is
that knowledge about the structure of say e can be incorporated into the solution of (1).

In this paper, the vector e is assumed normally distributed with mean zero and with a positive definite
m X m variance-covariance matriz C. Thus in the least squares approach to solving (1) the components
of the covariance matrix C' is assumed to be the identity matrix and one estimates the true vector z* by
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the vector & that minimizes the Euclidean norm of e, see for example [17]. In the General Gauss-Markov
Linear Model, the matrix C' is assumed known, symmetric and positive definite. Dependencies among the
various elements of the random vector e are reflected in both the sparsity and the numerical structure of
the covariance matrix C'. Thus in many applications, the covariance matrix C' is not known exactly but its
structure is known partially. For example, C' may be known up to a scalar multiple, as in C = o2 where
Q is a known symmetric positive-definite matrix. In other cases, the non-zero entries of the Cholesky
factor L of C' may be parameterized by a number of distribution parameters © = (01,...,6,)T. In all
cases, values ©* of © and z* of = are sought that optimizes a relevant objective function. Since the
optimal covariance matrix C* = C'(©*) need not have a closed form expression, an iterative process takes
place where an initial guess C%) = C(0©!%) is refined until convergence is reached or some failure condition
is met. The exact realization e of the random vector e being unknown, its actual value is replaced by
an appropriate estimate. It is customary to estimate the realization e of the error vector by é = A% — b
where Z is the Best Linear Unbiased Estimate (BLUE) for x, that is: & is the solution of the normal
equations (2) below.

ATC YAz = ATC—'b (2)

Some standard choices of objective function for computing optimal covariance matrices have appeared
over the years. The principle of Maximum Likelihood is employed in many statistical and optimization
problems, for example to compute semi-variograms in Geostatistics [48], to calibrate subsurface flow
models and analyze the impact of uncertainty on the output of these models [7], to estimate the parameters
of stochastic differential equations that model financial time series [18] and to compute confidence intervals
for the parameters of Hidden Markov models [1] to name a few applications. In Maximum Likelihood
estimation as the name implies one maximizes the likelihood function L of the error vector e as a function
of the vector ©. This function for the linear model (1) is shown in Equation (3), see for example [27].

1 —&éTce)—te

L(O) = (2m) #C(0)| ze™ = (3)

The likelihood is well defined when the matrix C' is non-singular. Nonetheless, the determinant |C| on
the right-hand side of (3) can be arbitrarily large or small. It is therefore customary not to maximize
the likelihood L but to minimize a linear function ® of the logarithm of the likelihood as shown in
Equation (4). The logarithmic terms on the right hand side of Equation (4) can be interpreted as a
penalty term added to the residual sum of squares term é7 C~!é.

®(0) = log|C|+efC e (4)

Patterson and Thompson [39] proposed a general Restricted Maximum Likelihood (REML) procedure
which is less sensitive to sampling bias than Maximum Likelihood and is consistent with ANOVA when the
matrix C' is diagonal. REML estimation differs from Maximum Likelihood by an additional logarithmic
term in its objective function ¥ as shown in Equation (5) below. This objective function ¥ can be derived
from the log-likelihood of the so-called error contrasts, see [19], [16] or [34] for details.

U (6,...,0, = log|C|+log |[ATC Al +rTC'r (5)

This additional term makes REML estimates of covariance matrices potentially much more expensive to
compute than ML estimates. Nonetheless, REML estimation has become the method of choice in areas
such as dairy production and heritability studies, see for example [14, 29]. REML estimation has also
been used in the context of crop quality studies [43], pollution monitoring [4, 46], analysis of hydrological
data [9]. Since the REML objective function ¥ differs from the ML objective function ® by a single
additional term, the algorithms presented in this paper can be easily tailored to compute ML estimates
of variance and covariance components.

A spectrum of local optimization algorithms can be applied to minimize the REML objective function
¥ and many algorithms and packages are available for this purpose on sequential computers, see for
example the excellent review in [34]. Several of these packages rely on a Newton-Raphson, a modified
Newton or a Quasi-Newton approach. The Hessian matrix of the REML objective function ¥ is dense
and its size is quadratic in the number of distribution parameters. This in itself limits the number of



distribution parameters ¢, ... 6, that can be estimated effectively using a Newton method. However, even
small Hessian matrices and gradient vectors of ¥ can be expensive to compute exactly. Tradeoffs are
typically made between computing inexpensive approximations of Hessian matrices and gradient vectors
and minimizing the number of iterations required to reach an optimum value of ©®. Assumptions are
often made about the structure of the covariance matrix in order to further speedup the computation
of the gradient. Thus Neumaier and Groenveld [34] rely on a block diagonal structure of the covariance
matrix C' to speed up the computation of either approximate or exact gradients. Mitsztal [31] uses such
analytical gradients to speedup a REML algorithm based on an accelerated Expectation Maximization
approach.

Parallel optimization algorithms are an active area of research, see for example the reviews by Schn-
abel [42], Pflug and Swietanowski [40]. In particular, the solution of the Generalized Linear Model
on parallel computers is an active field of research, as exemplified by the recent monograph by Kon-
toghiorghes on parallel Linear Model Estimation [23]. Matsuda et al. [26] and Ceron et al [8] investigate
hill-climbing derivative-free algorithms for maximizing the likelihood of phylogenetic trees from DNA
sequences. Jones et al. [21] and Méller [32] describe parallel Maximum Likelihood algorithms specialized
for positron emission tomography. Of particular relevance to the present paper, Bull et al. [6, 5] report
recent work on parallel Maximum Likelihood in the context of hierarchical models using parallel dense
matrix algebra kernels on Symmetric Memory Multiprocessors (SMP). In the latter work, special care is
taken to compute in parallel only those dense matrix operations that have enough arithmetic contents
relative to the synchronization costs. Linear algebra kernels such as those provided via the Basic Linear
Algebra Subroutines (BLAS) or LAPACK are essential tools for optimizing the performance of serial
software, see for example [11]. Such interfaces typically provide the first line of attack when parallelizing
existing software. However, in the case of REML estimation, the percentage of time spent within these
linear algebraic interfaces can range from very large to very small depending on the parameters of the
linear model of interest. The present paper demonstrates that REML estimation is a numerically inten-
sive procedure that is best implemented as a mixture of dense and sparse linear algebra kernels at level
of the covariance matrix C, i.e. Level 3 in [6]. With the notable exception of Misztal [30], it appears that
little attention has been given to general purpose REML estimation on supercomputers despite its large
computational cost and practical interest.

A serious impediment to the development of REML software on supercomputers has been that efficient
serial implementations of gradient computations in REML estimation typically rely on both the existence
of a block diagonal structure of the covariance matrix and on complex data structures. In application
areas such as livestock and crop management the covariance matrix is assumed block diagonal, reflecting
independent trials. This assumption simplifies the computation of V¥ because then C and C~! share the
same block diagonal structure. The size of diagonal blocks is typically small since for a dense diagonal
block, the number of covariance components is quadratic in the number of random effects in the statistical
model. One possibility for increasing the block sizes is to take advantage of the sparsity structure of each
block, see for example [15]. On the other hand, assumptions made about the covariance structure of field
data can result in under-estimates of the variability of the spatio-temporal data, see for example Meiring,
Guttorp and Sampson [28]. Similarly, banded covariance matrices occur in financial applications. A
general approach is thus needed to estimate efficiently sparse covariance matrices whose inverses are too
large to fit in the local memory of a single process. The purpose of this paper is to show this is possible
using publicly available parallel sparse linear algebra and optimization software.

The covariance matrix C is parameterized here by the non-zero entries of its lower-triangular Cholesky
factor L, i.e. C = LTL. The sparsity pattern of the matrix L is otherwise arbitrary and remains
unchanged throughout the computation. The exogenous matrix A is assumed dense with full column
rank and is independent of the vector © of distribution parameters. Dependant columns of A can be
removed before the start of REML estimation. Many details of practical REML estimation are left
aside in this paper such as the issue of missing data is not addressed although it is important from an
application perspective. It should be noted in this respect that the algorithms presented here can easily
be adapted for a matrix L whose sparsity pattern evolves during the computation. Another omission
is the absorption of effects introduced by Thompson [44, 45] that can significantly reduce the size of
inverted or factored matrices. The resulting “transformed” covariance matrix typically has many small
diagonal blocks, which in turn reduces the effectiveness of parallelization strategies based on parallel
dense matrix kernels. Constraints on the distribution and model parameters are not considered except



for the non-negative definiteness of C' imposed by its Cholesky factorization. Actual positive definiteness
could be enforced via some barrier function or by inequality constraints on the elements of the vector ©
as for example in [10].

The parallel implementations presented in this paper are made using the Portable, Extensible Toolkit
for Scientific Computation (PETSc) [2]. PETSc was developed as an object oriented toolkit for solving
partial differential equations in large-scale scientific applications. This package also supports uncon-
strained minimization and the solution of systems of non-linear equations, both using line search and
trust region methods. PETSc is built on top of the Message Passing Interface (MPI); it is portable
and has extensive debugging and benchmarking capabilities compared to other possible approaches. The
default matrix distribution is by blocks of contiguous rows. The parallel linear system solvers in PETSc
are Krylov methods; no parallel direct solver for distributed linear systems or parallel incomplete fac-
torization preconditioner is included in the PETSc distribution. Despite these limitations, the recourse
to a canned toolkit such as PETSc has considerably reduced the implementation time of the algorithms
presented here. Performance measurements and verification runs were performed on a 512 processor IBM
SP with Power II nodes at the Molecular Science Computing Facility (MSCF) in the William R. Wiley
Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory, on the Cray
T3E at the US National Energy Research Scientific Computing Center and on a 2 processor SGI Octane.

The paper is organized as follows. Restricted Maximum Likelihood is reviewed in Section 2 where
the notation is set. A parallel algorithm for computing the REML objective function is presented in
Section 3. Two algorithms for computing the gradient of the REML objective function are presented and
compared in Section 4. One is based on mixture of structured adjoint and tangent computations and
the other is based on Cramer’s Formula. Numerical experiments and scalability figures are presented in
Section 5.

2 REML Covariance Matrix Estimation

2.1 Assumptions and Notation

Some objects such as the gradient of the optimization function are viewed both as vectors and as matrices.
For any matrix X € R"*% vec(X) denotes the vector of length rs obtained by stacking the columns of
the matrix X. The transpose of the matrix X is denoted X”. Array indices start at 1 and the Fortran
90 notation for array indices and sections is followed. If () denotes a matrix, then the i*" column of Q is
denoted either Q(:,7) or Q;. The element of () in row ¢ and column j is denoted either Q(3,j) or ¢;;.

Throughout the paper, the letter p denotes the number of active processes in the computation. This
number is constant. The exogenous matrix A € R™*" is assumed dense, over determined and of full
column rank, in particular m > n. It is assumed throughout the paper that the matrix B = L~' A is such
that for a QR factorization B = QR with @ orthogonal and R € R"*™ upper triangular, the matrix R
is small enough to fit in the local memory of each process. This assumption can be relaxed provided the
latency of remote memory accesses is not too large. The covariance matrix C' admits a parameterization
of the form C = LLT where L is a lower triangular matrix whose entries depend linearly on the unknown
vector © = (64, ... ,Hq)T that parameterizes the normal distribution of the zero mean error vector e.
Without loss of generality, the non-zero entries of the matrix L are components of the vector ®. The
vector O is assumed small enough to be replicated onto all p processes.

It is assume here for simplicity that no component of © appears more than once in any row of L. In
this way, the position of each of the parameters 61,...,0, within the sparse matrix L can be recorded
in a single m x ¢ integer valued matrix L. The entries of the matrix L are defined by: IN/M = j when
L;; = 6, with all other entries of L being zero. The matrix L is used in two situations: to reset the
matrix L when the vector © is updated and to compute the product of a vector by a partial derivative
of either L or its transpose. The former operation has little effect on the overall performance of REML
estimation. The latter operation is simply a vector scatter operation, i.e. a redistribution of parts of this
vector. Multiple appearances of an element of ©® within the same row of L might also be recorded into a
structural matrix L that has the same sparsity structure as L but whose entries point to the appropriate
element of ©. The matrix L is distributed in the same manner as the matrix L onto the active processes.
This arrangement ensures that since the vector © is known to all processes, each process can compute its



local portion of L without further need for communication. The computation of LT on the other hand
requires communication among processes.

2.2 The REML optimization problem

The linear system (1) can be rewritten as in (6) where Cu = —r. For a given matrix C, this last system
has m equations and m +n unknowns. It will, if consistent, be satisfied by infinitely many pairs of vectors
z and u.

Az +Cu = b (6)

This indeterminacy is frequently resolved in statistics by minimizing the norm of v = —L~'r = LT u, see
for example [17]. The system (6) can be combined with the normal equations (2) to yield the augmented
linear system (7) below. C.C. Paige [37] has shown how this system can be solved accurately when the
matrix C is only semi-definite using his generalized QR factorization. There are cases when for large
values of m, the resulting m x m orthogonal factor of C' may be dense. Here it is assumed that the matrix
C is invertible and that the matrix A has full column rank which in turns implies that the augmented

system (7) is non-singular.
c A b
(& 0)(:) = () @

One nice aspect of the augmented system (7) is that given an estimate for C* the vector u can be estimated
independently from the BLUE estimate & of x*. The latter estimate can be computed from the optimizer
C* by solving the Normal Equations (2). The augmented system (7) also yields a simple expression for
the partial derivatives of u with respect to the model parameters ©. These partial derivatives can play
a role in the computation of an exact Hessian of ¥ or ®.

The REML covariance matrix estimate minimizes the REML objective function ¥ under the con-
straints (7). When the objective function ¥ is bounded from below, REML estimation can be seen either
as the minimization of ¥ or as the solution of the system of non-linear equations V¥ = 0. These two
approaches are not mathematically equivalent when ¥ is unbounded. The default PETSc unconstrained
minimization algorithm with line search is used here for the sake of demonstrating the scalability of
the proposed gradient algorithms, see Moré and Thuente [33] for details. It should be noted that the
solution of the corresponding system of non-linear equations, also implemented in PETSc, requires no
computation of the likelihood objective function and might be used with a parameterization C = WTW
where W is not triangular.

Newton-Raphson based methods are iterative methods that solve exactly a quadratic approximation
of the original optimization problem near the current approximation for the optimal ©*. These methods
compute at each step the REML gradient vector and either an exact or an approximate Hessian matrix.
Not all optimization techniques require the use of a Hessian matrix or even of a gradient vector. For
instance, Conjugate Gradient methods do not require exact Hessian matrices and are from the computa-
tional complexity point of view intermediate between steepest decent methods and Newton-Raphson, see
for example [36]. These methods are not studied here but it should be noted that efficient exact gradient
computations can also speedup the convergence of Conjugate Gradient methods.

A Newton-Raphson algorithm for computing the REML estimate C' proceeds iteratively from some
initial guess ©° = (9[10] .. .9;,0]) and the corresponding CI°! and builds successive estimates until some
convergence criterion is satisfied or lack of convergence is detected. The next REML estimate for ©*,
say ©t1 is obtained by a translation of the current estimate ©° along a “most-promising” direction.
This direction is determined by solving the “Hessian” system (8) or some computationally expedient
approximation, where H denotes the approximation of the Hessian of ¥ for the current estimate ©?
and where V¢ denotes the corresponding value of the gradient V.

H[i]yi — _vi (8)

The five basic components of a Newton-Raphson iteration are therefore the evaluation of the likelihood
function ¥, its gradient V¥ and its (approximate) Hessian H (), the solution of the Hessian system (8)



and the line search. This paper concentrates on the computation in parallel of the likelihood and gradient
vector. The approximate Hessian H used for this paper is the approximation that is recommended by
Neumaier and Groenveld in [34] as a good initial guess for a quasi-Newton REML algorithm. This
approximate Hessian H is defined by Equations (9) and (10) below where the column s; (k =1...q of
the m x ¢ matrix S is the vector (0C /90 )u. 1t is easy to see how H can be computed by first computing
in turn S, C~'S and U. The resulting operation count for the present setup is reported in Table 1 of
Section 3. Exact Hessian matrices can be computed if needed by a forward differentiation of either of the
gradient algorithms presented in Section 4. Such Hessian matrices are potentially much more expensive
to compute than the exact gradient V.

H = SsTc's-vtu (9)
RTU = ATc™'s (10)

In this paper, the Hessian system (8) is solved serially by all processes using a Krylov based method
even when it is small enough that a direct solution would be more effective. Multiple stopping criteria
are used in the default PETSc setting for unconstrained minimization. Convergence is detected when
the objective function has decreased enough in absolute terms or relative to the initial guess, or when
successive approximate solutions are close enough (with respect to the Euclidean norm). Divergence
is detected when either the number of non-linear iterations or the number of function evaluations has
reached some user-defined threshold.

3 Computing the likelihood

The REML objective function ¥ must be evaluated in the minimization approach to REML estimation.
The determinant |C| of C that appears in Equation (5) for the likelihood ¥ is readily available from the
exact Cholesky factor L of C'. The position of each of the parameters 61, ...60, within the sparse matrix
L being recorded by the matrix L, the number 7, of occurrences of each 6}, along the main diagonal of
L can be computed once at the beginning. These n; can be stored on all processes and used to speedup
the computation of log|C| = 2log|L| and its gradient.

The determinant of the matrix ATC~'A can be computed from a QR factorization of this matrix.
Pan, Yu and Stewart in [38] have shown that a QR factorization leads to a more accurate determinant
computation than a LU factorization does. Since in the present case, the exact Cholesky factor L of C
is known, the determinant of ATC~'A can be computed from a skinny QR factorization of the matrix
B = L7'A = QR. Here, the columns of the matrix B are computed by solving n independent m x m
lower triangular systems of linear equations. The latter parallelism is not exploited for this paper. Note
that higher than default accuracy is needed from the iterative solvers in order for the relation A = LQR
to hold numerically. The skinny QR factorization of B can be computed by a distributed modified
Gram-Schmidt (MGS) algorithm. Figure 1 shows pseudocode for the corresponding computation of the
logarithm ( of the determinant of BTB = RTR. When the matrix B is sparse, the determinant of
BT B can be computed from either its Cholesky factorization or a sparse QR factorization of B, see
for example [35]. An interesting point to note is that the augmented system (7) is well known from the
solution of the discretized Navier Equations. Thus, the vectors v and z can be computed directly from (7)
using a variety of iterative algorithms when A is nearly column rank deficient.

The residual term 7 C~!r that appears in the objective function ¥ is equal to u” Cu. The vector u
is central to REML estimation, it can be computed by solving the augmented system (7). Alternatively,
one can employ a skinny QR factorization of B to express u independently of xz as shown below in
Equation (11).

w = —L7TI-QQ")L™ ' (11)

In the present context, the matrices () and R are computed anew each time the vector © is updated.
The matrix @ being dense, the right hand side of Equation (11) can be computed efficiently. When the
matrix B is large and sparse, it may have to be reordered to produce a sparse matrix (). Alternatively,
one could in theory use the matrix ) implicitly since multiplication by I — QQT computes an orthogonal
projection onto the null space of B = L' A. Such an approach may be practical on a parallel computer



doit=1,n
QY = L7t 4;
doj=1,i—-1
Ql=Ql ' - (el )
end do
i1\ i—
- @' (@)
Qi=(Q") /n?
end do
C = Z:l:l QIOg 1223

Figure 1: Computing ¢ = log|ATC~1 A| from a modified Gram-Schmidt Factorization of B = L™ A

K1z Kz yTz Kz
%mxm %nxn %mxm %mxn %m %n %mxm
Uln+2 0 0 1 )
H | 2q q q q s 7 |2

Table 1: Major computational kernels used in the evaluation of the REML objective function ¥ and the
corresponding approximate Hessian.

when a good sparse approximate inverse of L is available, see for example [20]. Note also that each
column of the Jacobian of u with respect to © can be defined in terms of the solution of a system of
linear equations with the same coefficient matrix as (7). The initial cost of an approximate sparse inverse
of the augmented matrix in (7) may be justified in this context.

To conclude this section, Table 1 shows how many solutions of linear system (K ~!z), additional
matrix-vector multiplications (Kz) and inner products gy z) are employed to evaluate the objective
function ¥ and the corresponding approximate Hessian H. The vector scatter operation, labeled (K z)
in Table 1 denotes a redistribution of one length m distributed vector. The vector scatter operations
recorded for the evaluation of ¥ are due to the computation of the transpose LT of L. The latter matrix
is needed by some of the iterative solvers in PETSc. Since each row of the matrix L is local to one
process, the transpose LT can be computed by scattering each row of L onto all processes. Please note
that throughout this paper, operation counts and runtimes reported under the column headings K 'z,
Kz and Kz always take into account operations with both the matrix K and its transpose if any. Linked
triads y = ax + y of distributed vectors, also known as saxpys, and multiplication of distributed vectors
by a scalar are not accounted for in Table 1. Typically, these operations do not have an adverse impact
on the scalability of the overall algorithm.

The likelihood evaluation algorithm described here allocates two m x n distributed dense matrices,
namely B and its orthogonal factor (). The n x n triangular factor R of B is replicated onto all processes.

4 Gradient Computations

Much floating-point arithmetic can be avoided during the computation of the REML gradient when the
sparsity pattern of the covariance matrix is known to be block diagonal, say with C' = diag (C,...,C)).
In that case, Neumaier and Groenveld recommend using the following equations, once translated in the
notation of the present paper.

P = c'—CctA(BBY) T ATCT —u” (12)
ov oC
- = P.— 1
2, trace < 689k> (13)



= vec (P.)" vec <§—0Ck> (14)

The " diagonal block of P. + uu’l is C’i_lAi (BBT)f1 AzTC’l-_1 where A; is the block of rows of A
corresponding to the i** diagonal block C; of C. Equation (14) then provides an efficient way of computing
the gradient V¥. Neumaier and Groenveld use this expression in the context of a sparse exogenous
matrix A. They replace the exact inverse of BBT by a sparse approximate inverse (BBT)~ having the
same sparsity structure as BB” in order to reduce further the cost of computing V¥. A drawback of
Equation (14) when C has a general sparsity pattern is that C ! may be dense. A gradient computation
based on Equation (14) then involves computing a dense m x m matrix and may become prohibitive
when m is large. This problem can be addressed in several ways, two of which are described in the next
subsections.

First, the gradient V¥ can be decomposed as the sum of three independent gradients corresponding
to the three terms on the right hand side of Equation (5). The gradient of the residual term u? Cu can be
computed by using the product rule of derivatives and by observing that (0r/06;) = —A(0z/00)). The
resulting expression shown below can be computed in one vector-scatter, one matrix-vector multiplication
and one inner product. The matrix-vector multiplication on the right of the second equation is the same
for all distribution parameters and need not be repeated.

ortc—tr -+ 0C
78019 = —Uu 6_9ku
oL \" , .,
= =2 (8—01671) (L u)

The gradient of log(|C) is readily computed from the exact Cholesky factor L of C. Recall that ny
denotes the number of occurrences of each ) along the main diagonal of L. With this notation, the k"
element of the gradient Vlog(|C|) is shown in Equation (15) below.

Olog|C]

= 20" 1

The gradient of the logarithm ( of the determinant |BTB| = |R|? is the numerically intensive part of
the computation of VW. This gradient can be computed by using a mixture of techniques for structured
adjoint and tangent derivations [47]. The same gradient can also be computed from Cramer’s formula
together with structured tangent derivations. The corresponding two gradient algorithms are presented
next.

4.1 Gradients based on structured adjoint computation

The computation of ¢ in Figure 1 above can be seen as a composition of three operations, namely the
solution of LB = A, the QR factorization QR = B and a reduction operation to compute ( from
H = Ril, T Rfm. The gradient of each of these operations can be combined using the chain rule.
In the forward mode of differentiation, each assignment in Figure 1 is annotated with other assignments
that compute the partial derivative of the corresponding left hand side variable with respect to one of the
6. For example, the assignment to Q¥ in Figure 1 would be matched by the assignment shown below in
Equation (16).

QY = —L7'LA; (16)
Figure 2 shows how the pseudocode in Figure 1 can be augmented to compute the derivatives Q, R and
¢ with respect to 0 of @, R and ( respectively. The superscripts to the columns of the matrix ¢ have
been omitted for the sake of conciseness. This differentiation process is repeated for each element of the
vector ©. The amount of arithmetic needed to compute V( in the forward mode is therefore ¢ times
that of computing ( in the first place. In practice, some inner products need not be repeated because the
matrix R is available to all processes.



Begin Forward(B_, Q,R,(,0)

d=00 5 d=00
QO=L"'4 : O=-L'[A
doh=1,n
doj =1,h—1
rin = QF Qn TS QJTQh +QTQ; _
Qrn=0Qn—1jnQ; ; Qn=Qn—7rQ; —1jnQ;
end do
ran = (Qh Qn)* ; Thh = QFQn/rhn
d=d+2xlog(rpy) ; d:d+2*7"hhr,:,3
Qn = Qn/rhn i Qn = Qury) — ThaQuryy
end do

End Forward

Figure 2: Forward mode computation of the tangent of a modified Gram-Schmidt factorization with
respect to one model parameter 6y.

assignment adjoint
o _ a=c— ()b
c=a—(a"b)b b= — aTb)_—(cb)a
B=ala @ =20a
= B=—3bap=3
b - ﬁ a a = ﬁiél_)

Table 2: Annotations used for a reverse mode differentiation of some of the main statements in a QR
factorization

In the reverse (or backward) mode of differentiation, the scalar ¢ is computed once. The adjoints
7 = (0¢/01)T of each intermediate value ¢ with respect to ¢ are then computed starting from ¢ = ¢
until © = © which yields all the desired partial derivatives 0(/06y. Note that when ¢ denotes a matrix:
(tij) = (©)ji- Adjoints are propagated using the chain rule. The adjoint code for the main statements
of the QR factorization of B are shown in Table 2 where a, b and ¢ are any conformal vectors and (3 is
any positive scalar. The amount of floating point arithmetic required by a reverse mode differentiation
is a constant multiple of the amount of floating point arithmetic needed by the original computation.
However, all intermediate values must be available at the proper time in order for adjoints to propagate.
The adjoints of fi1, .. . gy with respect to ¢ are readily computed in reverse mode since their contributions
to ¢ can be summed independently. The intermediate vectors @7 used in Figure 1 to compute the QR
factorization of the dense matrix B can be recomputed during the reverse phase from the matrices @
and R and need not be stored. This reconstruction requires only vector saxpys, of the form y = az + y,
since the matrix R is replicated onto every process. Note that if the matrix R is not saved, it can be
recomputed from the @;’s and the p;’s with one inner product on average per element of the upper
triangular part of R. The adjoint of L with respect to { may be computed in reverse mode once the
adjoint of B has been computed. However, a naive implementation of this approach would result in m
matrix-vector multiplications and, for large enough m, may be prohibitive on multicomputers with a
large enough latency. This is because any rank-1 update E = F — yz” taking place in a triangular solve
with E,F € R™5 y € R” and z € R° is augmented in the reverse mode by the three assignments as
shown below where E, F € %", 57 € R and z7 € ®*.

F = F+E

S
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Q=0

dok=1,n
T =Trp
end do
dok=mn,1,-1
Qr = rreQr

Ty, = T, — 5QrQuryy
Qr = Qn/rer + 20, Q%
doj=k—1,1,-1

Qr = Qr +rjnQ;

w=Ql;
Q) =Qj —rikQr —wQf
Qr = Qr —wQF
end do
end do
dok=1,q
Vi = -7 Q;L " 55 B;
end do

Figure 3: Computing the gradient of ¢ = log|ATC~!A| using a combination of forward and backward
mode differentiation.

7 = z—yE
In the present case, the matrices £ and F' would be dense while the vectors v and w would be sparse.
Such matrix-vector operations are not supported by the current sparse BLAS standard. In place of a
fully adjoint computation of the gradient of (, the partial derivatives of B with respect to the elements
of ©® can be combined with the adjoint of B using the Chain Rule. These partial derivatives require ¢
scatters of a length m vector and gn linear solves with L as coefficient matrix. This is the approach taken
for the present paper and the corresponding pseudocode is shown in Figure 3.

4.2 Gradients based on Cramer’s Formula

The above gradient algorithm requires the solution of ¢n linear systems and many distributed inner prod-
ucts from tangent computations. Another gradient algorithm can be derived from Cramer’s Formula (17)
where W is any square matrix.

Olog|W| T ow
o8, = V¢ (W) vec 20, (17)

It follows from Equation (17) that each component of V( can be computed according to Equation (18)
below. This formulation has the advantage that the same systems of linear equations are solved for all
the elements of ©. In the present context, the columns of the inverse of the matrix BT B are computed
serially since the matrix R fits in the local memory of each process. The resulting algorithm is shown in
Figure 4. Note that if BT B is large and sparse its inverse may also be replaced by a sparse approximate
inverse.

T
68—61 = —2vec ([BTB] ') vec (BTL_lg—eLkB> (18)
Table 3 shows in conclusion the cost of evaluating the gradient V¥ using a forward mode computation,
the mixed structured adjoints and tangent approach of 4.1 and Cramer’s formula as in 4.2 once the
likelihood has been computed. The column headings are explained in Section 3 with respect to Table 1.
All three gradient algorithms allocate an additional m xn distributed dense matrix to store either gradient
of adjoint values.
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solve LTF =B
set U = (BTB)_1
dok=1,q
w = 0.0
doj=1,n
w=w+ UjTFT (OL/06y) B;
end do
VEkr =w
end do

Figure 4: Computation of the gradient of x = log |ATC~!A| using Cramer’s formula

Method K1z Kz ylz Lz
g grxn | gmxm o gmxn | pm R | R
Forward | gn+n O 0 0 qn’ +q 0 q
Mixed | gn 0 0 0 24n fgntq 0 | gn+g
Cramer | n n 0 qn q gn | gn+gq

Table 3: Major computational kernels of evaluating the gradient of the REML objective function W.

5 Numerical experiments and parallel performance

Thorough experimentation of the computational complexity of parallel numerical algorithms can only be
based on problems whose sizes can be varied in arbitrary ways, which is seldom the case for data sets
from real life applications. It is on the other hand much less easy to generate synthetic REML problems
with a known solution vector ©* than it is for the problem of solving systems of equations. A trade-off
is to generate, for some given m, n and sparsity pattern L, a problem with a solution that is likely
nearby a known point. Precisely, a random matrix A is computed whose entries are independent and
uniformly distributed between 0 and 1. A vector v is also computed whose components are independent
but normally distributed with mean 0 and variance 1. Once a matrix L has been defined for some choice
of O, the response vector b is defined as b = A1 + Lv where 1 is a vector of units. There is no guarantee
that the REML covariance matrix estimate found for such synthetic problems will be L L™ moreover the
estimate computed by Newton-Raphson need not be globally optimum. The REML algorithms described
above were validated by comparing their rates of decrease of the objective function and of the norm of the
gradient. The three gradient algorithms of Section 4 were found to be interchangeable, in the sense that
they produced the same sequence of objective function values and converged to similar distribution and
model parameters. The approximate Hessian algorithm was verified using an exact Hessian algorithm that
consists in a forward differentiation of the mixed adjoint-tangent gradient algorithm of Subsection 4.1.
For the first series of test cases, the matrix L is block diagonal with a single lower triangular block
being repeated. Each non-zero element of this diagonal block is a distinct element of the vector ©. The
linear system solver is the default PETSc solver, i.e. restarted GMRES. Table 4 shows the impact of
varying the number m of equations in the linear model on the runtime of REML estimation with gradients
evaluated with the mixed mode and Cramer algorithms. The linear models all have 10 model parameters,
10 distribution parameters and a block diagonal covariance matrix. Most of the time spent evaluating ¥
is spent computing the matrix B, its QR factorization and the vector LT u. All these quantities are used
in the subsequent gradient or Hessian computation. The approximate Hessian H remains inexpensive to
compute as the number m of equations is increased. The overall runtimes, labeled REML, are roughly
linear in the number of equations. Table 5 illustrates the impact of additional model parameters on
REML runtime using either the mixed adjoint-tangent or the Cramer based gradient algorithms. The
latter approach is clearly more efficient. Table 5 shows that for large enough values of n the computation
of B and its QR factorization become dominant. This is in accordance with the operation counts in
Tables 1 and 3. The skinny QR factorization of B used here is based on level-1 BLAS operations.
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secs Mixed Mode Cramer

m REML ¥ V¥ H |REML ¥ Ve H
10000 | 86.8 13.1 704 3.3 56.1 137 39.1 3.3
50000 | 124.0  17.0 102.1 4.9 | 64.5 17.0 425 5.0
100000 | 173.6 234 143.6 6.6 | 78.6 22.0 50.2 6.4

150000 | 205.8 273 170.2 83| 92.7 271 573 83

Table 4: Run time on 32 processors of an IBM SP of the first five REML iterations as a function of the
number m of equations. The covariance matrix C' is block diagonal with identical 4 x 4 blocks and there
are 50 model parameters.

secs Mixed Mode Cramer

n REML ¥ V¥ H | REML ¥ VU H
20 | 254 34 191 3.0 221 34 156 3.1
40 | 61.3 9.2 40.0 3.1 423 94 298 3.1
60 | 1102 169 89.8 3.5 | 66.1 174 452 35
80 | 172.9 278 141.3 3.7 924 279 608 3.7

100 | 251.0 409 2056 4.6 | 123.7 417 776 44

Table 5: Run time on 32 processors of an IBM SP of the first five REML iterations as a function of the
number n of model parameters. The covariance matrix C' is block diagonal with identical 4 x 4 blocks
and there are 10,000 equations.

Efficient implementations of MGS based on level-3 BLAS and collective communications could be used
instead, see for example [24]. A fully adjoint based computation of V¥ would require fewer solutions of
m X m linear systems than the mixed mode computation of V¥ and may outperform the Cramer-based
algorithm when the block size is large enough. As discussed in Section 4 such a gradient algorithm would
might rely on parallel sparse BLAS subroutines not included in the current Sparse BLAS standard.

Table 6 illustrates the impact of the number of distribution parameters on the REML runtime for
block diagonal linear models with 50,000 equations and 50 model parameters. The runtime is roughly
linear in the number of distribution parameters. The remaining tables illustrate the scalability of REML
estimation based on Cramer’s Formula. Table 7 shows the runtime of the first three Newton-Raphson
iterations for a linear model with using Cramer’s Formula on an IBM SP and a Cray T3E. The linear
model has a block diagonal covariance matrix with one million equations and 10 x 10 diagonal blocks,
which yields 55 distribution parameters. There are 10 model parameters. As the number of processors is
increased, the costs of inner products and vector scatter operations increase to the point where there is
no speedup. This example shows the importance of a small inter-processor latency.

In the second series of test problems, the matrix L has ¢ consecutive bands below the diagonal with a
distinct element of © along each band. The inverse of the resulting matrix L is typically dense. Traditional

secs Mixed Mode Cramer

q REML ¥ V¥ H |REML ¥ V¢ H
1 77.8 15,5 61.6 0.7 | 24.3 16.0 7.6 0.7
3 90.8 16.8 723 1.7 | 355 171 168 1.6
6 106.2 18.6 84.7 2.9 | 48.3 172 282 2.9
10 122.2 17.1 100.2 4.9 | 68.6 18.3 456 4.7

15 149.6 174 1252 7.0 | 86.3 172 622 6.8

Table 6: Run time on 32 processors of an IBM SP of five REML iterations as a function of the number
q of distribution parameters. The covariance matrix C' is block diagonal with 50,000 rows. There are 50
model parameters.
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secs IBM SP CRAY T3E
Iteration Iteration

P 1 2 3 1 2 3
16 66.2 130.5 129.4
32 38.6 73.3 73.4 13.2 273 28.7
64 30.9 56.0 53.7 | 85 16.3 16.4
128 | 34.2 534 54.1 6.7 11.2 11.1
256 7.7 10.5 10.4

Table 7: Run time of the first three REML iterations as a function of the number p of processes. The
covariance matrix C' of size 1,000,000 is block diagonal with 10x10 blocks. There are 10 model parameters.

secs Block Jacobi Additive Schwarz

n REML ¥ V¥ H |REML ¢ V¢ H
16 | 3852 1928 1923 1.2 | 187 82 76 29
32 | 5379 2690 2689 1.7 | 14.2 57 6.2 2.3
64 14.7 54 7.0 24

128 22.8 79 11.0 4.0

Table 8: Scalability of REML estimation using Cramer’s Formula for a bi-diagonal factor L of size
100,000 on an IBM SP. The estimation was carried for five Newton-Raphson iterations; there are 10
model parameters.

approaches as exemplified by Equation (14) of Section 4 do not readily apply in such cases. Table 8 shows
the runtime of the first 5 Newton-Raphson iterations for a bi-diagonal factor L of size 100,000. There
are 10 model parameters and the gradient is computed using Cramer’s Formula. Table 8 illustrates the
importance of preconditioning as the performance of block Jacobi clearly deteriorates as more processes
are added. With 64 and 128 processes, there is a dramatic increase in the runtime of some of the Newton-
Raphson iterations that results in a time out of the computation. The additive Schwarz preconditioner
with unit overlap fares better with an optimal runtime at p = 32. Multigrid preconditioners are available
as an advanced feature of PETSc and would likely improve the scalability of REML estimation for this
test case where the covariance matrix C' does not have a sparse inverse. Alternatively, since the matrix L
is assumed lower triangular, it is technically possible to replace restarted GMRES by a direct triangular
solve. The most effective strategy in terms of robustness and scalability is likely application specific and
is not pursued further here.

So far, this paper has been concerned with REML estimation but the algorithms presented here can
be specialized to compute ML estimates as well. Table 9 shows some runtime measurements on an IBM
SP of ML estimation with an exact Hessian and a Cramer based gradient. The linear model is the same
as for Table 7.

To summarize, two parallel algorithms for computing REML gradients have been presented and

Secs
p REML ¥ Vo H
16 | 5313 4327 2154 4666
32 | 2896  243.1 1182 2535
64 | 1222 281 60.0 1136
128 | 831 236 39.0 769

Table 9: Scalability of ML estimation using Cramer’s Formula and exact Hessians for a block diagonal
factor L of size 100,000 on an IBM SP. The estimation was carried for five Newton-Raphson iterations;
there are 10 model parameters and 55 distribution parameters.

13



compared for large linear models where the inverse of the covariance matrix need not be sparse. Of
these two algorithms, the one based on Cramer’s Formula was shown to be faster and more scalable than
one based on a mixture of adjoint and tangent computations. However, analysis of the latter algorithm
suggests that an effective way to compute the REML gradient may be via full adjoint computations using
on parallel BLAS routines with sparse vector arguments.

The linear system solvers and preconditioners used in this paper can all be selected by setting ap-
propriate runtime arguments to PETSc programs. Given this constraint, the scalability of the REML
estimation algorithms presented here is very good for standard shapes of covariance matrices. These
REML algorithms were tested on linear models with banded covariance matrices whose inverses are
dense. Such covariance matrices may for instance correspond to correlation in time. In the latter case, a
reduction in runtime was observed on up to 32 processors of an IBM SP. Further speedups may be achieved
via more efficient multigrid preconditioners or preconditioners in BlockSolve95 [22] and ParPre [13] or
by direct sparse linear system solvers. This work shows that REML estimates of covariance matrices can
be computed efficiently on distributed memory multicomputers using widely available parallel software
tools.
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