Hidden cost of memory management in
asynchronous communication: A Distributed

Hash Table Example

J.M. Malard and R.D. Stewart*
March 15, 2002

Abstract

Dictionaries in general, and hash tables in particular, are an essential component
of many computational science and data-mining applications. It is shown that
in the context of a distributed asynchronous hash table on top of network of
IBM SMPs, the main burden performance drag related to memory management
is waiting for buffers to become de-allocatable. A simple queue mechanism is
found to be effective.

1 Introduction

Dictionaries in general, and hash tables in particular, are an essential compo-
nent of many computational science and data-mining applications. Several ma-
jor sequential scripting and programming languages such as Python and Java,
incorporate built-in dictionaries. For any distributed hash table API a choice
must be made as to whether or not internal storage and buffer space will be
provided by the user. One approach, typical of fortran 77 programming, is to
pass all the necessary workspace from the caller through the library API. The
apparent advantages of this approach are many. First, the user knows exactly
how much space will be used; although an API could set an upper limit on
the amount of dynamically allocated memory. Second, the user may use this
workspace for other purposes in between calls to the hash table library; yet
anyone involved in porting Fortran H code to an MPP is aware of the related
portability issues. Third, it takes time to allocate storage dynamically, yet it
may not be possible to know in advance how much storage to allocate on each

*Pacific Northwest National Laboratory, Battelle Boulevard, P.O. Box 999, Richland, WA
99352. The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute
for the U.S. Department of Energy under Contract DE-AC06-76RLO 1830.

process when the distribution of the hashed keys is unknown. A fourth argu-
ment might be that memory management along with pointer arithmetic are the
main source of software bugs. Truly, all these arguments are valid; a hash table
interface that addresses many of them and yet allocates its own buffer space is
presented in [4]. The purpose of this paper is to expose the impact of memory
management on this library in the context of synthetic benchmarks. It turns
out that the main runtime drag comes not from memory allocation but from
waiting time associated with memory de-allocation.

Our hash table library is implemented on top of IBM’s LAPT active messages.
For a detailed discussion of active messages see for example [3, 5]. The main
reason for using active messages is the high synchronization cost imposed in this
context by traditional communication APIs such as MPI [2], SHMEM or the
Advanced Remote Memory Copy Interface (ARMCI)[6]. To see this, suppose,
that an origin process O requests up to N values associated with a key K from
the target process T. The number of values returned cannot be determined
before the target process is queried. Moreover, for the request to be meaningful
the matching values on the target process T should be returned atomically to
the origin process O, lest they are deleted by some other concurrent request.
Computations that can potentially use a distributed hash table include sparse
matrix gather and scatter, histogram construction in discretized grid numerical
computations, data clustering with millions of data records and features, etc.

An active message is a form of remote procedure call that is initiated by
an origin process, and that may or may not involve synchronization with the
target process. Several implementations of active messages have been developed
but few appear to be actively supported at the level of GAMMA [1] and IBM’s
Low-Level Communication Application Programming Interface (LAPI), see for
example [7]. The APIs of these implementations vary widely; typically the origin
process of an active message supplies the address of a message handler to be in-
voked at the target process. For the present work, we used active messages from
the IBM LAPI library because it runs on some of the largest and most heavily
used computers at PNNL and because of the current lack of alternative active
message layers that have acceptable performance and widespread distribution.

2 Hash Table Data Structure

Active messages in LAPT are initiated at the origin process by a call to LAPI_Amsend.
The arguments to this procedure include: a message header, a message body
and the address on the target process of a header handler function. The message
header contains all the information needed by the communication system to de-
liver the message at the target process. It can also include a limited amount of
user information. The header handler returns two things to the LAPI (runtime)
system: a pointer to some space where to store the incoming message and the
address of a completion handler to process the message once it has been copied
to the latter space. The header supplied by the LAPI runtime system to the
header handler written by the user is only valid during the execution of the user

header handler. The latter subroutine must therefore make a safe copy of this
header for use by the matching completion handler.

The LAPI runtime system involves three threads: a user thread, a notifica-
tion handler thread and a completion handler thread. Header handlers may be
called from any of the two first threads. Completion handlers are exclusively
called from the third thread. The design of LAPI makes it possible to relegate
all memory management to the user code.

Our distributed hash table library (CSE_HASH) is implemented in tree
nested levels: distributed, threaded and serial. The serial level implements
a simple dynamic hash table with open addressing and fixed bucket size. The
threaded level simply wraps mutex locks around every operation at the serial
level. Mutexes are needed to prevent local accesses to a hash table from in-
terfering with accesses that originated from a different process through a LAPI
call.

The implementations of insertion and deletion are described next to show
where explicit memory management occurs. Let us first look at insertions.
When values Vs for a given key K are to be inserted by process O in the hash
table segment at process T, the necessary header data, including the address
of Vs, is saved in a message request at O, and an active message is initiated.
Upon reception of this message at P, the header handler at P allocates space
for a copy of the header and for the incoming values. The matching completion
handler will lock the segment of the hash table at process T, it will attempt
to insert the said key-value pairs and then it will release its lock. Locking the
whole hash table segment each time it is accessed can be justified on the ground
that handlers can only run within the completion handler thread, hence one
after another. It may be that not all the key-value pairs could be inserted, say
because the local hash table has reached mid-way a hard upper limit set by
the user. It is therefore important for the origin process O to know how many
values where successfully inserted at the target process T. For this purpose, the
completion handler issues a put operation that notifies the origin process O of
the number of successful insertions. This put operation also increment a remote
LAPI counter at the origin process. The completion handler at T cannot return
before the local data for this last put operation can be safely discarded.

Deletions at the target process T issued from the origin process O works
about the same way as an insertion except for the fact that the key and the
associated values are transfered from the target process T to the origin process
O. This means is that space for these values is allocated in the completion
handler. It also means that an additional put operation is needed to transfer
values to the origin process. This second put can take considerably longer to
complete. No other accesses to the hash table at T can reuse or release space
used by this put operation before an appropriate counter is incremented by the
LAPI runtime system.

Three questions arise naturally. What time is spent allocating buffer space
on average? What is the relative cost of rehashing a table when it overfills?
How much time is spent waiting to free storage?

insertion deletion
K initiation completion | initiation completion
0 6.58822 83.7126 7.07645 342.28
1 5.91850 80.9096 128.484 424.517
128 | 6.56755 90.7731 7.93997 103.691

Table 1: Breakdown of the average time in micro-seconds for inserting or re-
trieving a single key-value pair.

3 Benchmarking

Runtimes were measured in dedicated mode on an IBM SP at Pacific Northwest
National Laboratory with 4-way Power I1I nodes with 375 MHz CPUs. All the
runtimes reported here are for 4 such nodes, totaling 16 processors. Bandwidth
estimates are not presented here, for large enough values of L and in the absence
of network congestion, they are similar to that of th LAPI_Put operation that
transfer the values between processors. We study the average performance via
the insertion and deletion of M = 1,000,000 keys uniformly distributed in the
range from 0 to 7,000,000. The same sequence of keys is to time insertions and
deletions. The sequences of key insertions and deletions are block distributed
among the p processes. The mapping between keys and processes is cyclic,
in that all values associated with key k are stored in the hash table segment
of process P, 11104 . In details, process P; inserts L values with key k; with
kntypvi <3 < kni/ps(i+1) onto process ij mod p- Those L values are otherwise
independent, e.g. it is possible for one process to retrieve half of them, while
another process retrieves the remaining half. Accesses to the hash table are
blocked in the sense that the origin process waits for completion of all pending
requests only after initiating 100 hash table accesses. The impact of this blocking
factor is outside the scope of this paper, see [4] for details.

On average a deletion takes significantly more time to complete than an
insertion does. The reason is that in the former case the completion handler
thread is tied up waiting for the final put operation to finish locally. This is
illustrated in Table 1. There, a circular queue of size K is allocated along with
each local hash table. When K > 0, the completion handler for deletions returns
immediately after pushing onto this queue pointers to all the transient informa-
tion needed for completion of the two final put operations. When the queue is
full, the completion handler simply waits on the LAPI counter associated with
the put operations at the front of the queue. The front of the queue is then
moved by one, storage is released and the completion handler reuses the queue
slot that has become last. When K is 0, the completion handler for deletions
waits on its own two LAPI puts before returning. That is the queue is not used.
In all cases, a single 64-bit value (L = 1) was inserted or deleted with each key.
The clock resolution is about 3 micro-seconds.

In the present context, the time spent calling the memory allocation routine

malloc on behalf of the completion handler is small compared to the time spent
waiting for arguments to LAPI puts to become reusable or releasable. In the
case of the deletions, such waiting (a call to LAPI_Waitcntr) can be up to 40
times longer than the time spent in malloc. In the present context, runtime is
not a strong reason for eliminating calls to malloc.

Experiments to related performance with a user defined upper limit on the
table density did not produce any significant difference in the maximum comple-
tion time for values between 0.1 and 0.9. Significance is measured with respect
to the clock resolution of 3 micro-seconds. There was though an impact in the
sense that the time spent by each process converged to the maximum as the
threshold approached 1.

4 Conclusions

It has been seen that in the context of a distributed hash table the major run-
time drag due to memory management befalls on memory de-allocation not on
memory allocation. Precisely, most of the time at both the origin and target
processes can be related to waiting for releasing space already in use. It was
shown that a simple circular queue can alleviate this problem when the active
message framework makes it reasonable to lock entire local segments of the hash
table. This locking strategy may not be pertinent in the context of completion
handlers that run on multiple threads, that communicate with third-party pro-
cesses or in the context of non-atomic values. In all such cases, the addition to
the runtime system of a limited garbage collection capacity may be necessary
instead of the simple queue presented here.

References

[1] G. Chiola and G. Ciaccio. Architectural issues and preliminary benchmark-
ing of a lowcot network of workstations based on active messages. In 14th
ITG/GI Conference on Architecture of Computer Systems, pages 13-22,
September 1997.

[2] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir,
T. Skjellum, and M. Snir. MPI-2: Extending the message-passing interface.
Technical Report MCS-P568-0296, Argonne National Laboratory, July 1996.

[3] S.S. Lumetta, A.M. Mainwaring, and Culler D.E. Multi-protocol active
messages on a cluster of smp’s. In Supercomputing 1997, November 1997.

[4] J.M. Malard and R.D. Stewart. A distributed hash table library based on
active messages. In submitted to SPAA02, March 2002.

[5] R.P. Martin. HPAM: An active message layer for a network of HP worksta-
tions. Technical Report CSD-96-891, University of California at Berkeley,
1996.

[6]

J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy
library for distributed array libraries and compiler run-time systems. Lecture
Notes in Computer Science, 1586, 1999.

G. Shah, J. Nieplocha, C. Mirza, R. Harrison, R.K. Govindaraju, K. Gildea,
P. DiNicola, and C. Bender. Performance and experience with LAPI: a
new high-performance communication library for the IBM rs/6000 sp. In
Proceedings of the International Parallel Processing Symposium, pages 260—
66, 1998.

